GRK 2450/1:Tailored Scale-Bridging Approaches to Computational Nanoscience (compnano)

Tailored Scale-Bridging Approaches to Computational Nanoscience
GRK2450logo Elstner, KIT
GRK 2450

In the recent years, a high concentration of theoretical groups has emerged at KIT (Karlsruhe) and HITS (Heidelberg), with research centered on multiscale simulations in biology, chemistry, physics, and materials sciences. These groups have developed complementary expertise in terms of computational methods and application areas, thereby systematically covering a large spectrum of interesting systems. The common theme of all problems addressed in the RTG is concerned with the foundations of simulation methods from atomistic to mesoscopic resolution. Chemical details matter, and the question is, how those affect macroscopic properties and vice versa, how macroscopic properties steer processes at the molecular level. These problems exhibit an inherent recursiveness, coupling processes on different time-and/or length-scales.

 

This recursive coupling is at the core of many innovative materials and biological questions. To address these questions, the RTG brings together a variety of methods starting from high-level quantum chemical approaches (QM), density functional theory (DFT), semi-empirical (SE) methods, molecular mechanics: (MM), coarse-grained(CG), mesoscopic and continuum methods.

 

For further information, please see here.