Welcome to the KIT Center Materials in Technical and Life Sciences (MaTeLiS)

The challenges of the digital economy of the 21st century in the context of the forth industrial revolution require a constant development of new materials to enable new and challenging applications. The KIT Center Materials in Technical and Life Sciences integrates KIT research groups from the natural sciences, engineering and life sciences, which share a common interest in material research and in the development of new materials. The close cooperation between scientists from different disciplines creates a great potential for leading edge research in material sciences. The technological development requires continuous research into and development of new efficient materials for specific applications. In the KIT Materials Center, new materials and technologies are developed in a closed chain, from basic research to economic implementation, thanks to the integration of basic and application-oriented research. The development of nanostructured materials as well as the development of environmentally friendly technologies play a special role in the KIT Center. Furthermore, the integration of information-based approaches and modeling in the context of the digitalization of material sciences plays a growing, and increasingly important, role.

The work of the KIT Materials Center covers five topics:

Tastatur Nath
Register with the KIT Materials Center



Based on the Europium(III) scientists aim to advance the development of Quantum Computers. Photo: S. Kuppusamy, KIT
A Molecule That Responds to Light
Tungsten component produced by 3D printing using electron beam melting. Photo: Markus Breig, KIT
Electron Beam Melting Gets Brittle Metal into Shape
Solar modules without (left) and with (right; visualized) Phytonics film. The film almost completely suppresses reflection for all wavelengths and angles of incidence of light. Photo: Andrea Fabry; Editing by Phytonics
Anti-reflective Films: What High-tech Can Learn from Plants
Interior view of the SmartBatteryMaker with the central robot and three production modules for stacking (left), contacting (center), and packaging (right). Photo: Robert Fuge
Agile Production: More Than 14 Million Euros for Battery Research
In terms of efficiency, perovskite solar cells have caught up on silicon solar cells, but some of their properties are not yet understood completely. Photo: Markus Breig, KIT
Shedding Light on Perovskite Films
Visualization of a quantum processor: Its core contains a chip on which superconducting qubits are arranged in a checkered pattern. Photo: Christoph Hohmann
Technologies for More Powerful Quantum Computers
With the help of newly developed inks and special production techniques, such as origami, inexpensive thermoelectric generators can be produced for various applications. Photo: Andres Rösch, KIT
Energy Harvesting: Printed Thermoelectric Generators for Power Generation
Operando X-ray spectroscopy shows what happens in each single part of a working catalyst. (Photo: Dr. Dmitry Doronkin, KIT)
Three-dimensional View of Catalysts in Action
Thanks to its flexibility and adhesion, the biodegradable display can be worn directly on the hand. (Photo: Manuel Pietsch, KIT)
Biodegradable Displays for Sustainable Electronics
A platinum/palladium noble metal block, the atoms, and deposition of a platinum cluster on cerium oxide that acts as efficient catalyst. (Image: ITCP/KIT)
How to Make Catalysts More Efficient
Cover KIT
Advanced Materials (Wiley/VCH) Special KIT-Issue

"Multidisciplinary Materials Research at the Karlsruhe Institute of Technology (KIT)"

The KIT Special Issue contains a total of 27 publications by scientists from the KIT Materials Center, on a broad range of topics.

available online
News Archive